Interactive Semantic Image Retrieval
نویسندگان
چکیده
The big challenge in current content-based image retrieval systems is to reduce the semantic gap between the low level-features and high-level concepts. In this paper, we have proposed a novel framework for efficient image retrieval to improve the retrieval results significantly as a means to addressing this problem. In our proposed method, we first extracted a strong set of image features by using the dual-tree rotated complex wavelet filters (DT-RCWF) and dual tree-complex wavelet transform (DT-CWT) jointly, which obtains features in 12 different directions. Second, we presented a relevance feedback (RF) framework for efficient image retrieval by employing a support vector machine (SVM), which learns the semantic relationship among images using the knowledge, based on the user interaction. Extensive experiments show that there is a significant improvement in retrieval performance with the proposed method using SVMRF compared with the retrieval performance without RF. The proposed method improves retrieval performance from 78.5% to 92.29% on the texture database in terms of retrieval accuracy and from 57.20% to 94.2% on the Corel image database, in terms of precision in a much lower number of iterations. Keywords—Content-based Image Retrieval (CBIR), Relevance Feedback (RF), Rotated Complex Wavelet Filters (RCWFs), Dual Tree Complex Wavelet, and Image retrieval
منابع مشابه
Semiautomatic Image Retrieval Using the High Level Semantic Labels
Content-based image retrieval and text-based image retrieval are two fundamental approaches in the field of image retrieval. The challenges related to each of these approaches, guide the researchers to use combining approaches and semi-automatic retrieval using the user interaction in the retrieval cycle. Hence, in this paper, an image retrieval system is introduced that provided two kind of qu...
متن کاملبازیابی تعاملی تصاویر طبیعت با بهره گیری از یادگیری چند نمونه ای
Content-based image retrieval (CBIR) has received considerable research interest in the recent years. The basic problem in CBIR is the semantic gap between the high-level image semantics and the low-level image features. Region-based image retrieval and learning from user interaction through relevance feedback are two main approaches to solving this problem. Recently, the research in integra...
متن کاملDocument Image Retrieval Based on Keyword Spotting Using Relevance Feedback
Keyword Spotting is a well-known method in document image retrieval. In this method, Search in document images is based on query word image. In this Paper, an approach for document image retrieval based on keyword spotting has been proposed. In proposed method, a framework using relevance feedback is presented. Relevance feedback, an interactive and efficient method is used in this paper to imp...
متن کاملAn Interactive Approach for Retrieval of Semantically Significant Images
Content-based image retrieval is the process of recovering the images that are based on their primitive features such as texture, color, shape etc. The main challenge in this type of retrieval is the gap between low-level primitive features and high-level semantic concepts. This is known as the semantic gap. This paper proposes an interactive approach for optimizing the semantic gap. The primit...
متن کاملUsing Text Surrounding Method to Enhance Retrieval of Online Images by Google Search Engine
Purpose: the current research aimed to compare the effectiveness of various tags and codes for retrieving images from the Google. Design/methodology: selected images with different characteristics in a registered domain were carefully studied. The exception was that special conceptual features have been apportioned for each group of images separately. In this regard, each group image surr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- JIPS
دوره 9 شماره
صفحات -
تاریخ انتشار 2013